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Introduction

The knowledge of the thermal 

conductivity of soils required in 

various applications:

– Nuclear waste disposals

– Buried cables and pipelines

– Geothermal applications
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(Source:  EIG Euridice, 2011)

(Source:  IEEE, 2011)

(Source:  COMSOL, 2010)
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Objectives

• Initial objective: 

 Measure thermal conductivity of a fine-grained soil and 

assess structural aspects in compacted state

• Discuss the applicability of the measurement 

method on soils in laboratory conditions

• Compare the obtained results with existing models 

for soil thermal conductivity prediction
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Plan

1. Theoretical aspects

A. Thermal transfer in soil materials

B. Thermal conductivity models for soils

2. Measuring soil thermal conductivity

A. Thermal conductivity measurement methods

B. Experimental set-up

C. Calibration

D. Studied soils & Scope of tests

3. Results and discussion

A. Results

B. Error analysis

4. Conclusion
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Thermal transfer: Fourier’s Law
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T1

T2

q

T

Proportionality factor = 

thermal conductivity [W/mK]

In conventional materials λ is constant for a given material at a 

given temperature 

In soils λ may vary with a change of the soil state 

(amount of water, degree of compaction, structure,...)
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Thermal transfer in soils

• Soil is a 3-phase material:

 λsoil depends on the conductivity of 
each phase and on their proportions

• 3 main factors have an influence on λ
in soils:

1. Proportion of voids and their spatial 
distribution (n or γd)

2. Proportion of water that fills the 
voids (Sr or w)

3. Mineral composition of the solid 
phase 

mica   2-3 W/mK

quartz  7-8 W/mK

07/11/2013 6Nicolas Rasson



Influence of the structure (1/2)
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• Two extreme configurations: 

parallel/series model

• 2 observations

high sensitivity of λ to the 

microstructure

 low dependence on the spatial 

arrangement

 high sensitivity of λ to a  

variation in λs or λf 

q

λs

(1-n)

λf

n

q

λs

(1-n)

λf, n
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Influence of the structure (2/2)

In practice:

• In dry soils λs/λf  is important (>100)

 very high sensitivity to the particle spatial 

distribution

• In saturated soils λs/λf  is moderate (<13)

The thermal conductivity can be approximated by 

the geometric mean equation:
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always contained between the upper and 

lower bounds
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Models for soil thermal conductivity

– Kersten’s model

– Johansen’s model

 based on an interpolation at a given porosity 
between the conductivity in the dry state and in the 
saturated state:

Normalized thermal conductivity:
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Geometric mean Empirical function of n 

(linear, exponential,...)

Empirical function of Sr

Does not depend on n

Depends on type of soil

Require good knowledge of soil parameters: n, Sr, q

2 well-known models for thermal conductivity prediction:

quartzother minerals
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Thermal conductivity measurement

• Steady-state methods

– Guarded hot plate

– Heat-flow meter

• Transient methods 

 infinite line source theory
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– Thermal needle probe

T1

T2

QΔx

A

(Hukseflux, 2003)
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Experimental set-up

• Thermal probe 

– Length: 15 cm

– heating wire resistance Rh [Ω/m]  

– thermocouple junction

– Specified accuracy: ± (3% + 0,02) W/mK
(homogeneous material and good 
contact)

• Constant current source

I  q = RhI
2

• Precision multimetre to record output 
signal [mV]

• Shunt resistance Rc to measure input 
current accurately at the end of the 
test

I=Vc/Rc
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Calibration (1/2)

• The probe was calibrated on agar gel reference material: 

λ tabulated = 0.61 W/mK λmeasured = 0.57 – 0.65 W/mK
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• Check influence of

– Measurement time

1. First non-linear transient part 

2. Then linear portion  λ

3. Border effects

Transient time over after 25 seconds

– Sample size

Height: 20 cm, Diameter: 10 cm

No border effects were observed for measurements as long as 10 minutes

– Input power

Should large enough to generate measurable temperature increases 

Limited to 6 W/m (0.3 A) 

Appropriate: 4 W/m K

(Jones, 1988)
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• Develop a systematic method to detect the linear part in the 

ln(t) – T graph

 Based on method used at ULg

1. Plot ln(t) – T graph

2. Compute first derivative s based on 

several measurement points by least 

square method

3. Compute second derivative s’

 The most linear part corresponds to the 

peak value in 1/s’

If several peaks, observe s to check 

coherence

Calibration (2/2)
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Studied soils & Scope of tests
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• Fine-grained: MLD silt

Compacted (Proctor) at various stages to 

assess different effects:

1 – 4: dry density/porosity

2 – 4 – 5: water content/degree of saturation

3 – 5: effect of structure (dispersed or aggregated)

• Coarse-grained: MOL fine sand
Dense and loose at various water contents

(Delage, 1996)
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Results: silt (1/2)

• Difficult to reach desired density

• Wetting of samples 4  5

Vertical moisture gradient due to 

low permeability

Solution: wet sample from top & 

bottom side

• Hard to insert probe in compacted 

silt, even with pre-hole
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Results: silt (2/2)

• Values fit with Johansen’s model:  

± 10 % difference (except point 2)

• Results are globally coherent

Clear influence of w

• But large dispersion: ± 10 %

Higher dispersion than for the 

reference material 
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Results: sand
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• Agreement with model

– Good agreement for dry state

– Over-prediction of saturated state

– Incoherence of intermediate values 

and under-prediction with respect 

to the model

• Significant dispersion on the 

thermal conductivity: ± 15 %

• Significant vertical moisture 

gradient in both dense and loose 

state due to gravity
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Error analysis (1/2)

• Errors due to measurement method

– Probe-to-sample contact resistance

 May lead to an excessive transient 

time

Values improved by spreading high 

thermal conductivity grease on the 

needle

Under-prediction caused by bended 

needle and soil cohesion

– Errors due to a variation of input 

current
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Error analysis (2/2)

• Errors due to sample heterogeneities

 Mainly caused by vertical moisture gradient

– Uncertainty about the moisture content value associated to the 

measurement

– Effect of vertical thermal conductivity gradient on measured values 

unclear 
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Improvements & Recommendations

• Apply thermal grease on probe in soils that present 

cohesion

• Sample dimensions as small as possible

• Determine moisture content at least at 3 levels in the 

sample

• Use constant current source

 If possible monitor value during measurement to check stability 

(3 digits)
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Conclusion

• Better understanding of parameters that influence soil 

thermal conductivity

• In soils  decreased accuracy

• Large samples required

• Appropriate for in-situ and undisturbed soil sample 

measurements

• Models are useful and precise, provided good knowledge 

of soils characteristics (Sr, n, quartz content)
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Thermal probe not ideal for 

precise laboratory study 

involving structural aspects
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