Master's thesis – June 2010

Characterization of the mechanical behavior of interfaces casing / cement of injection wells in the geological context of CO₂ storage

Experimental study and numerical modeling

Caroline DUBOIS

Under the direction of Professor Jean-Pierre TSHIBANGU

Introduction

Mechanical characterization of interfaces

→ Tests of single and double shearing assemblies

Numerical modeling with Abaqus™

→ Simulating the behavior of interfaces in a test called Push-Out

Introduction

Mechanical characterization of interfaces
 → Tests of single and double shearing assemblies
 Numerical modeling with Abaqus[™]
 → Simulating the behavior of interfaces in a test called Push-Out

Introduction | Mechanical Characterization | Numerical Modeling | Conclusions

Problematic of CO₂ geological storage

Method to significantly reduce the amount of CO₂ in the atmosphere

→ Ensure the well seal

Weakness zones = Junctions

- Formation / Cement
- Cement / Steel

➔ Carbonation of cement

Portlandite Water + CO₂ Calcium carbonates

$$Ca(OH)_2 + H^+ + HCO_3^- \rightarrow CaCO_3 + 2 H_2O$$

Mechanical properties

Porosity

Behavior of the interfaces

Example of an interfacial law

Example of failure characterization :

Université de Mons Caroline Dubois | Master's thesis – June 2010

Characterization of the behavior of steel-cement interfaces

in configurations of mechanical loading that may occur:

- in well
- in carbonation conditions

Overall framework

Introduction

Mechanical characterization of interfaces → Tests of single and double shearing assemblies

Numerical modeling with Abaqus™

→ Simulating the behavior of interfaces in a test called Push-Out

Influence of the imposed conditions

Speed Extend of the interface

Cement blocks

Caroline Dubois Master's thesis – June 2010

Influence of the setted conditions

Influence of the fixed displacement speed

Influence of the interface area

Behavior of interfaces in contact with CO₂

Eau : strictly adhesive failure

Introduction

Mechanical characterization of interfaces

→ Tests of single and double shearing assemblies

Numerical modeling with Abaqus™

→ Simulating the behavior of interfaces in a test called Push-Out

Push-Out

Interfacial law available in Abaqus[™]

Parameters of the interfacial law:

Elastic behavior (K_{NN} , K_{SS}) Failure initiation: strain from which damage begins (10⁻³) Failure propagation: displacement reached the ruin of material (5 mm)

User interfacial law

Adhesion-friction law (Cangémi 1997)

Normal-adhesion law \longrightarrow Perpendicular behavior of the interface $\begin{cases} R_N - K_N \cdot I_N \cdot \beta^2 \ge 0 \\ R_N - K_N \cdot I_N \cdot \beta^2 \cdot I_N = 0 \end{cases}$

Adhesion-friction law \longrightarrow Tangential behavior of the interface $\begin{cases} R_T - K_T \cdot \mathbf{I}_T - \beta^2 < \mu | R_N - K_N \cdot \mathbf{I}_N - \beta^2 \Rightarrow \mathbf{I}_T = 0 \\ R_T - K_T \cdot \mathbf{I}_T - \beta^2 = \mu | R_N - K_N \cdot \mathbf{I}_N - \beta^2 \Rightarrow \mathbf{I}_T = 0 \end{cases}$

Non-reversible adhesion \rightarrow degradation of the adhesion of the contact

$$\dot{\beta}=f\psi$$

R : reaction force at contacts

[*u*] : displacement

 β : adhesion intensity $\rightarrow \beta \in [0,1]$

K : stiffness

w : adhesion energy of Dupré

 μ : coefficient of friction

User interfacial law

Implementation of a specific law that pairs adhesion and friction (Cangémi 1997)

Parameters:

Elastic behavior (K_{NN} , K_{SS}) Failure and degradation (w)

Introduction

Mechanical characterization of interfaces → Tests of single and double shearing assemblies Numerical modeling with Abaqus[™] → Simulating the behavior of interfaces in a test called

Push-Out

Conclusions

Trials

Modeling

Mechanical characterization of interfaces cement / steel

➔ Development of a protocol for shear tests

→ Characterization of interfaces aged in water + CO_2

➔ Reverence on cement blocks

2 12 22 22 12 50 51 81 21 91 51

Specific law for modeling the behavior of interfaces cement / steel

→ Testing a law available in Abaqus™

→ Implementation of a specific law that paires adhesion and friction (Cangémi 1997)

Introduction | Mechanical Characterization | Numerical Modeling | Conclusions

Thank you for your attention