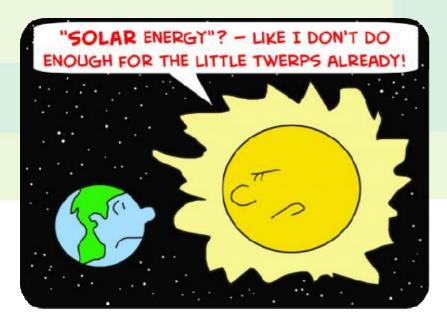
The role that plays geothermy in the Sustainable Development for new building construction

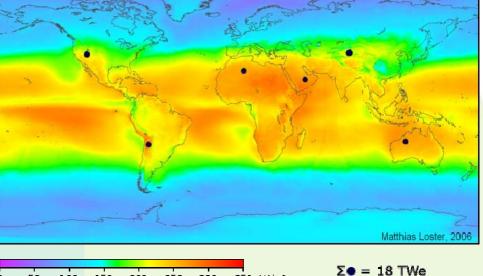
Michel Guillaume – Guillaume Donnet




### Presentation scheme



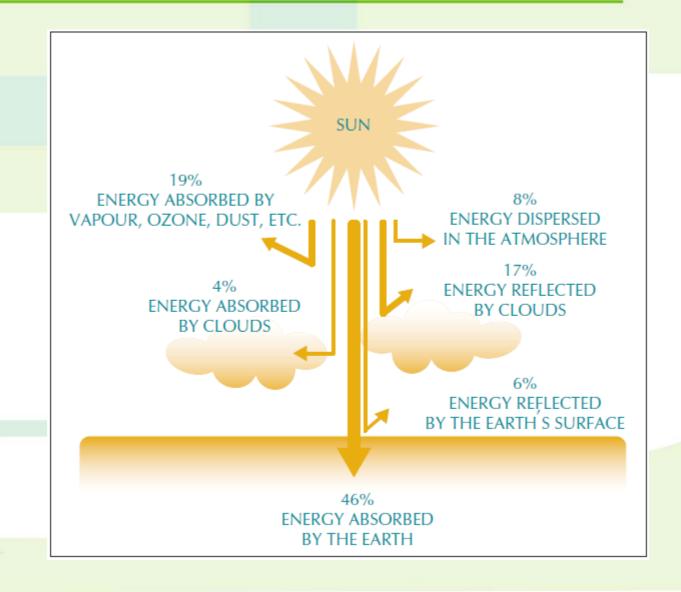
- Introduction
- How does it work?
- Scope and decision tool
- Presentation of several projects
- Conclusions




# Introduction



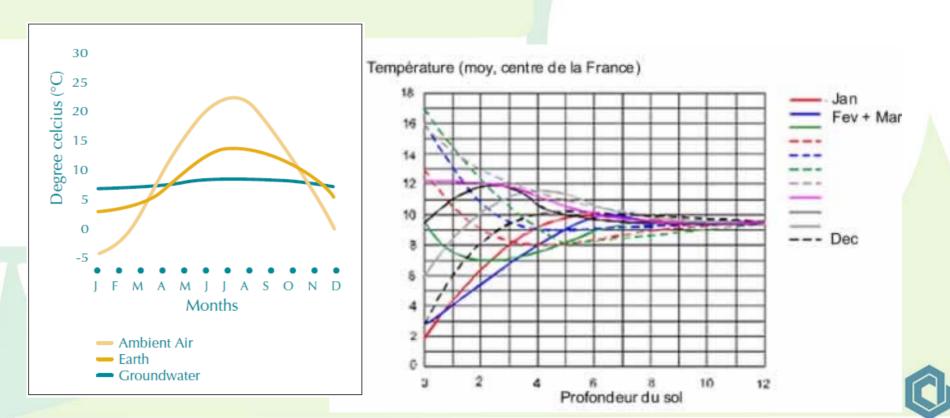







350 W/m²




# Introduction

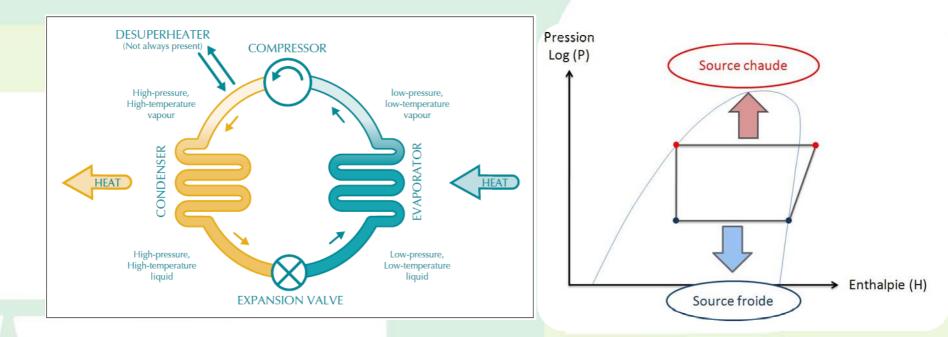




# Introduction

- Available locally and great amount
- Ground temperature varies less than air temperature




# How does it work?

- A geothermal heat pump (GHP) is able to collect heat from the ground (low temperatures) in order to pump/reuse it at higher temperatures
- ⇒ Savings from 30 à 70% on heating 20 à 50% on climatisation



### How does it work?

Heating /cooling mode



- COP varies between 2 and 5
- SPF varies between 2 and 4

### Types of GHP

- Fluids (loop distribution)
  - Water-Air
  - Water-Water
- Types of exchanger
  - GCHP (Ground)
  - GWHP (Groundwater)
  - SWHP (Surface Water)

## Ground-coupled Heat Pumps

- Vertical Exchanger
  - 40 to 60 W per drilling meter (type of ground)
  - Large buildings
  - minimal disruption of the landscaping desired
  - Little land available for GHX
- Horizontal Exchanger
  - 24 W/m<sup>2</sup> of burried collector surface
  - Less expensive
  - Requires more area
  - Small buildings and residential sector



# GHP all over the world...

- Seventies: GWHP in the residential sector
- Eighties, closed loops
- 28 GW (thermal) supplying 72 TWh (annual growth of 10%)
- More than1 million GHP system installed
  - 46% vertical closed loop
  - 38% horizontal closed loop
  - 16% GW



# GHP all over the world

- The technology is mature but high initial cost
  - 200% conventional system (residential)
  - 20-40% more than constant volume, single zone rooftop units
  - 20% more than multizone or central two-pipe chilled water arrangements



### GHP all over the world

BUT

**Iower life-cycle costs** than conventional systems due to their **efficiency** and lower **maintenance** requirements



# GHP all over the world

- Trends
  - Residential
    - high-end residential constructions where the higher initial costs do not constitute a large fraction of the project
  - Non-residential
    - Pay-back less than 5 years not required
    - Surface available



### Scope of a project

- 1. Define the future needs of the building (kWh/m²/y) PE
- 2. Available surface for the project
- 3. Weather forecasts and geothermal data
- 4. Type of exchanger
- Design of GHP with regards to the economical optimum (HP – supplemental heating?)
- 6.  $C_{pcg} < C_{autre}$  (financial helps)
- 7. Impact on the E-level of a building?

### Decision tool – types of needs

- The installation of a GHP is optimal when
  - Heating and climatisation needs
  - Climates where great temperature variations occur
  - New constructions or replacement of old systems



### Decision tool

| Prevailing<br>needs        | Heating | Climatisation | Mixed            |
|----------------------------|---------|---------------|------------------|
| Price of<br>electricity    | Low     | High          | Low except peaks |
| Price of<br>fossile energy | High    | _             | -                |

 If the heating and climatisation needs greatly differ, the HX should be designed with the smallest load + supplemental system



## Decision tool: financial helps

| Brussels      |               | Flanders    |               | Wallonia    |               |
|---------------|---------------|-------------|---------------|-------------|---------------|
| Individuals   | Enterprises   | Individuals | Enterprises   | Individuals | Enterprises   |
| 750 €         | Tax reduction |             | Tax reduction |             | Tax reduction |
| 1500 €        | 30,00%        | 2770 €      | 15,50%        | ▶ 1500 €    | 13,50%        |
| <b>2250</b> € |               |             |               | 2250 €      |               |
| max 30%       | max 200000 €  | max 40%     |               |             |               |



### Decision tool: total annual cost

$$C_{pcg} < C_{cc}$$

$$C_{pcg} = \sum (a.I)_{pcg} + \kappa_{Epcg} \cdot \frac{Q_{chaud,pcg}}{SPF_{chaud}} + \kappa_{Epcg} \cdot \frac{Q_{froid,pcg}}{SPF_{froid}}$$

$$+ \kappa_{E,supchaud} \frac{Q_{supchaud}}{\eta_{supchaud}} + \kappa_{E,supfroid} \frac{Q_{supfroid}}{\eta_{supfroid}} + constante$$

$$C_{cc} = \sum (a.I)_{chaud+froid} + \kappa_{E,chaud} \frac{Q_{chaud}}{\eta_{chaud}} + \kappa_{E,froid} \frac{Q_{froid}}{\eta_{froid}} + constante$$

### Decision tool: E-level

#### E=100 x Consumption of primary energy (computed) Reference value

E90 = +/- 195 kWh/m²/y EP E75 = +/- 155 kWh/m²/y EP E45 = +/- 95 kWh/m²/y EP



#### • Galt house East hotel:





- Galt house East hotel:
  - 88.320 m<sup>2</sup> / 6.000 kW<sub>th</sub> (HP) installed
  - World's largest installation
  - Next to another Galt House Hotel (with conventional heating)

=> Easy to compare



- Operating mode:
  - Use of groundwater
  - heating through several loops distributed in the building.
  - Use of water tanks
  - Water is tranferred to another well.



- Initial cost:
  - 310 euros / kW
    - vs. 410 620 euros / kW for conventional system. (compressor, boiler, VAV)
  - frees 2.323 m<sup>2</sup> of rental area
    - Comparison with the other GHEH



- Use:
  - 18000 euros saved every month on energy bill
  - Lower maintenance
  - No failures

- DFS (Hessen, Germany)
  - 57.000 m<sup>2</sup> of building offices
  - Global consumption target:
     100 kWh/m²/year
  - Site located next to protected groundwater well, use is forbidden



- Operation:
  - Closed loops (no use of groundwater)
  - Pure water within the pipes
    - Frozen if < 4 degrees at the evaporator of the HP</li>
  - P<sub>heating</sub> = 330 kW, P<sub>clim</sub> = 340 kW
    - 154 drills of 70 m depth, spaced by 5 m each
    - COP value: 6 (water at 30 degrees)
    - Emission through ceiling
  - HP linked to urban network (supplying 30% of annual heating needs)
  - 20% of HVAC is supplied by a back-up system



- Remarks:
  - Profitable compared to existing efficient solution of urban heating network
  - Could be implemented on site where groundwater is protected
  - If pure water is used, the filling of the boreholes should have a high conductivity



- Rest home
- Surface: 1500 m<sup>2</sup>
- Heating power: 90kW
- Cooling power: 5kW (120m<sup>2</sup>)
- HTW with thermal panes
- Annual consumption: 160 MWh

- Two cases:
- GHP designed with 100% of the power
   13 boreholes of 100m
- GHP designed with 50% of the power => 80% of the needs are filled
  - 6 boreholes
- Comparison with a conventional solution (gas boiler and rooftop units)



• SPF 3.5

| 13 boreholes | 6 boreholes |
|--------------|-------------|
|              |             |
| 131000       | 61500       |
| 1            |             |
| 28           | 12          |
| 19.7         | 8,5         |
|              | 131000      |



#### Impact on the E-level

– 1 point E corresponds to +/- 2.2 kWh/m²/y EP

| GHP Rest Home                         | 13 boreholes | 6 boreholes  |
|---------------------------------------|--------------|--------------|
| Primary energy reduction              | 30 kWh/m²/an | 24 kWh/m²/an |
| E-level reduction                     | 13           | 10           |
| Simple pay-back time                  | 28           | 12           |
| Pay-back time with<br>financial helps | 19,7         | 8,5          |



# **Conclusions**

- High growing potential
- Pay-back times are high
- Price of utilities is determinant (long term)
- Impact on the EPB-certificate
- No feed-back on long-term thermal imbalances

Sources: Retscreen International; « La géothermie » Jean Lemale, Dunod; Sustainable Energy Utilisation, KTH, Stockholm



Pour de plus amples informations :

Michel Guillaume Direction Développement Durable CFE michel\_guillaume@cfe.be 0497/51.42.85 0032/2/661.18.26

