TRACTEBEL Engineering

PRESSUREMETER TEST

Study case: Leuze-en-Hainaut wind farm wind turbines 9 & 10

Presentation for SBGIMR / BVGIRM

CHOOSE EXPERTS, FIND

PARTNERS

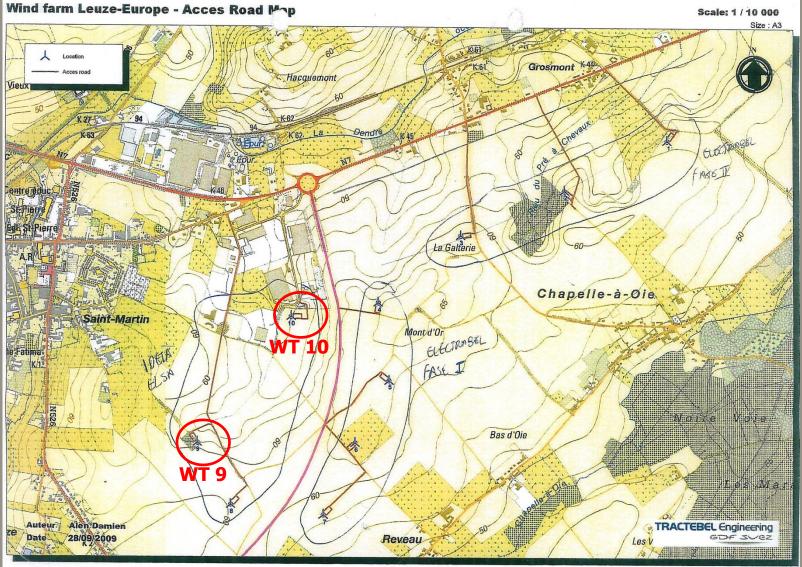

P. Debauche & A. Roth

TABLE OF CONTENTS

- 1. Leuze-en-Hainaut wind farm layout and geological map
- 2. Role of a wind turbine foundation
- 3. Wind turbine foundation layout
- 4. Required soil investigation depth
- 5. Geotechnical soil investigation upon WT 10
- 6. Pile design based on pressuremeter test

LEUZE-EN-HAINAUT WIND FARM LAYOUT

0 2 930 86

WT 9 gJm

Chapelle a Die

oire-Voie

artiment

Onenov

GEOLOGICAL MAP OF LEUZE-EN-HAINAUT

Renatissance, Cab!

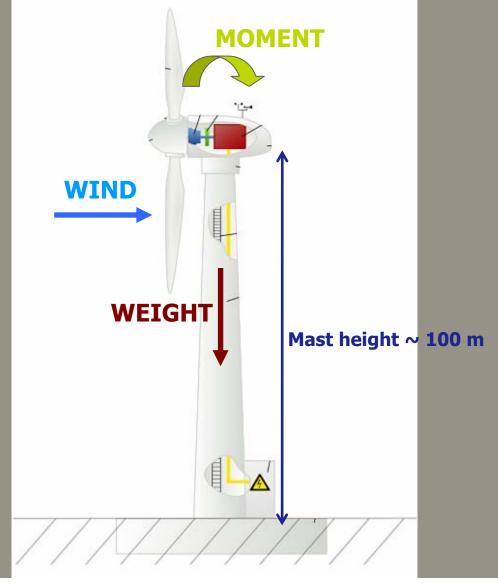
Pane de la Phi Rosier

apont 37

Groupe tertiaire : Etage Yprésien Yc – Argile sableuse ou plastique + septaria

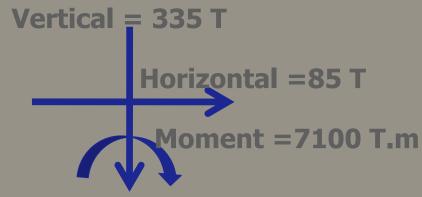
Groupe primaire : Etage Viséen

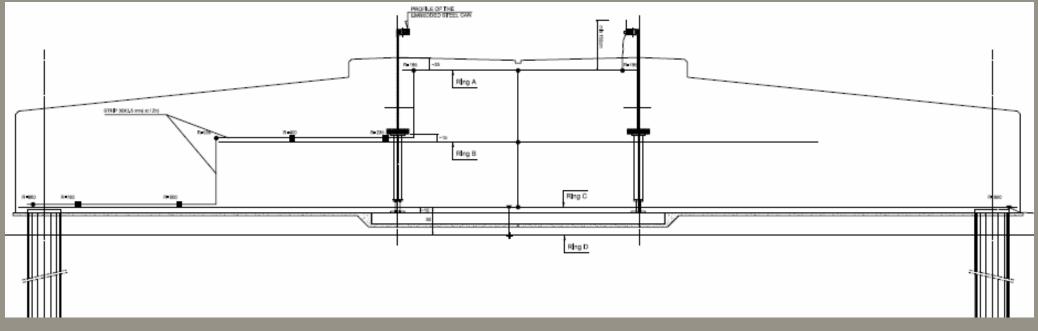
Baraque V1a – Calcaire noir et bleu foncé

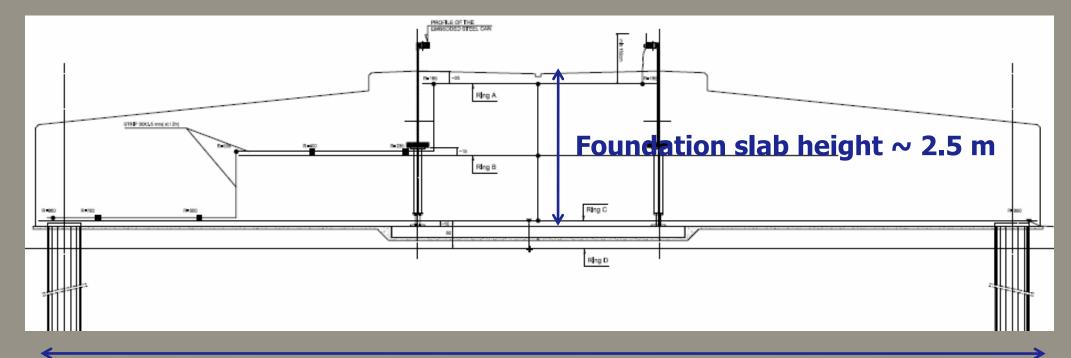


ROLE OF WIND TURBINE FOUNDATION

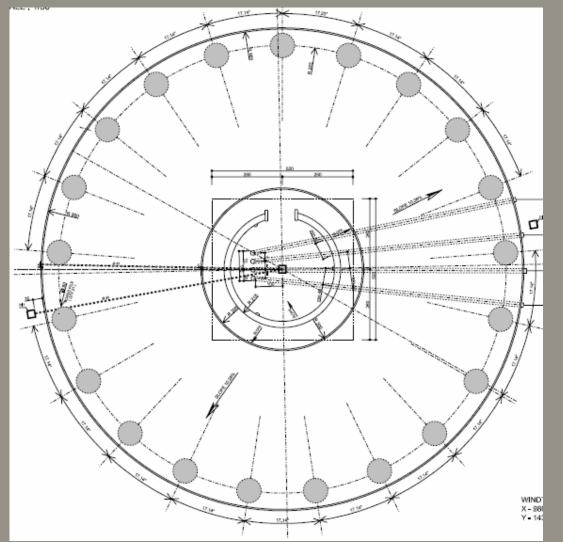
Resist forces (vertical, horizontal and moment) and transmit them to competent bearing soil layers in depth (shallow or deep).


Sollicitations :


- Wind
- Weight
- Seismic


FORCES APPLIED ON FOUNDATION SLAB (SLS)

WIND TURBINE FOUNDATION LAYOUT (1)



Foundation slab diameter ~ 18 m

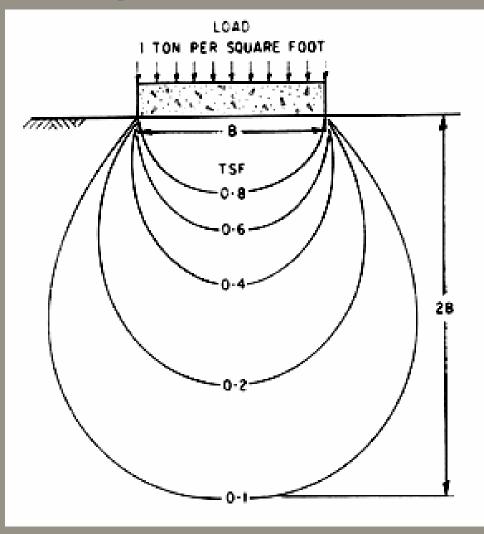
Foundation slab weight ~ 1300 tons

WIND TURBINE FOUNDATION LAYOUT (2)

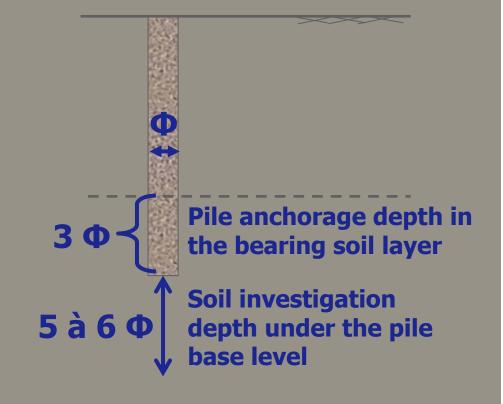
Number of piles/WT: from 15 to 35 Piles diameter: from 50 to 100 cm

Piles length: from 10 to 25 m

Factorized design loads per pile:


WT 9 & 10: 21 piles

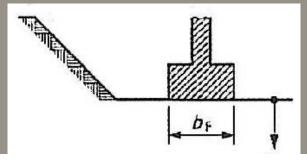
	SLS	ULS
Compression [T]	170	240
Traction [T]	50	100
Horizontal [T]	8	12

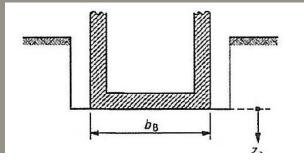


REQUIRED SOIL INVESTIGATION DEPTH

Superficial foundation

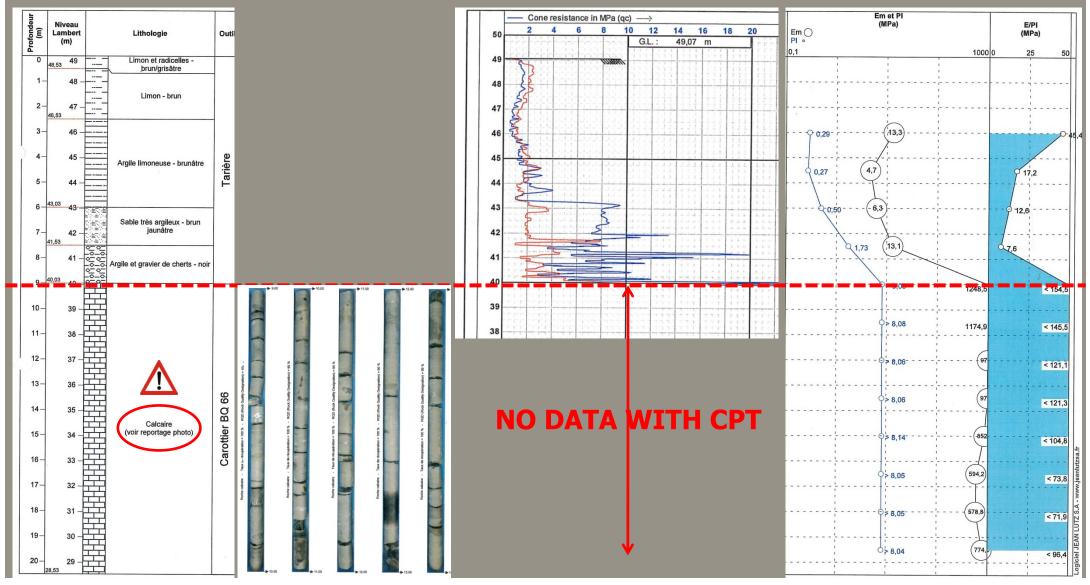
Deep foundation - piles


RECOMMENDATIONS FOR THE SPACING AND DEPTH OF INVESTIGATIONS BASED ON E.C. 7


Spacing - points at

- For high-rise & industrial structures : grid pattern with points at 15 m to 40 m distance;
- For special structures (e.g. machinery foundations, etc) :
 2 to 6 investigation points per foundation.
- For high-rise structures : investigation depth ≥ 3*bf ;

Depth


 For raft foundations with several foundation elements whose effects in deeper strata are superimposed on each other : investigation depth ≥ 1.5*bB.

GEOTECHNICAL SOIL INVESTIGATION (WT 10)

PILE DESIGN BASED ON PRESSUREMETER (1)

The limit pile load Q_u is obtained by additing the limit pile base load Q_{pu} with the limit friction load Q_{su} :

$$Q_u = Q_{pu} + Q_{su} \quad [kN]$$

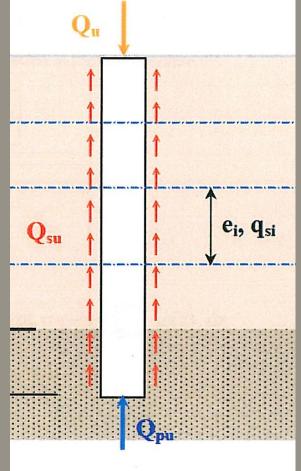
Where $Q_{pu} = \rho_p A q_{pu}$ [kN]

With

• ρ_p : the reducing area factor for the pile base force;

• A : the pile base area;

• q_{pu} : the limit pile base strength.


Where
$$Q_{su} = \rho_s . P . \sum q_{si} . e_i$$
 [kN]

With

• ρ_s : the reducing area factor for the lateral friction force;

• P : the pile base perimeter;

- q_{si} : the limit unit lateral friction in the soil layer i;
- e_i : the soil layer i thickness.

PILE DESIGN BASED ON PRESSUREMETER (2) Limit base pressure q_{pu}

According to fascicule 62 – titre V, the limit base stress is provided by the formula

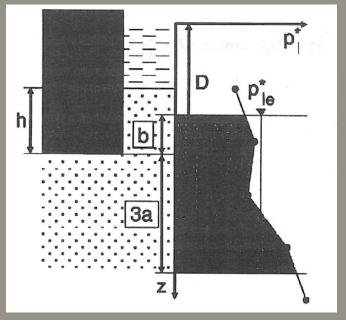
$$q_{pu} = k_p \cdot p_{le}^* [kN/m^2]$$

where k_p is the bearing factor depending on soil nature and pile type (see table here below)

Nature des terrains		Eléments mis en oeuvre sans refoulement du sol				
	Α	1,1	1,4			
ARGILES - LIMONS	В	1,2	1,5			
	С	1,3	1,6			
	A	1,0	4,2			
SABLES - GRAVES	в	1,1	3,7			
	С	1,2	3,2			
1	Α	1,1	1,6			
CRAIES	В	1,4	2,2			
3	С	1,8	2,6			
MARNES , MARNO-CALCAIRES		1,8	2,6			
ROCHES ALTEREES (1)		1,1 à 1,8	1,8 à 3,2			

PILE DESIGN BASED ON PRESSUREMETER (3)

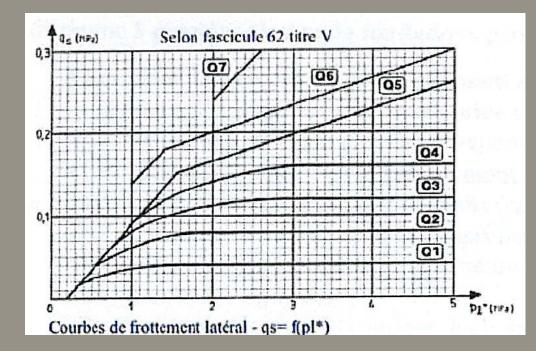
 \mathbf{P}^*_{le} is the soil equivalent net limit pressure under the pile base


$$p_{le}^* = \frac{1}{b+3a} \int_{D-b}^{D+3a} p_l^*(z) dz$$

With a = max (B/2; 0.50 m)

b = min(a,h)

D = real pile anchorage depth


h = pile anchorage depth in the bearing soil layer

PILE DESIGN BASED ON PRESSUREMETER (4) Lateral friction q_s

Based on fascicule 62 – titre V, the lateral friction q_s is a function of the limit net pressure p_1^* and the curve to consider depends on soil nature and pile type.

	ARGILED -		LIMONS	DA	DLEC -	GRAVES	CRAIES			MARNES		ROCHES
		в	с	1	B	c	٨		c	•	11	
Forá simple	Q1	01'02	07.03		-		01	93	0: 05	03		06
Forá boue	01	Q1'	a2 (1)	01	02' 01(1)	01' 02	01	03	Q1 Q5	93	0, 05	06
Foré lubé (lube récipéré)	01	01'	01, 0 ⁵ (1)		0 2' 01	01 02	Q1	02	07 04	0,	01	1
Foré tubé (lube perdu)			Q1		Q1 Q2		(4)		a7	03	-	
Puits (5)	01	Q2	Q3				01	02	03	a4	Q5	Q6
Mélal batu termé	01	c	2	100000	az	03	03 (4)		(4)	0,	04	Q.
Batu prélabriqué bélon	01	٥		Q3			(4)			93	04	Q4
Batu moulé	01	0	2	67	02	03	a1	02	03	03	04	-
Batu enrobé	01	0	12		03	04			(4)	93	94	-
Injecté basse pression	01	0	02		03	ingi's	02	03	04	05		- 10
Injecté haute pression ⁽⁸⁾	-	04	Q5	Q5 0		06	-	95	06	06		07 ⁶⁷¹
(1) Réalésape et rainu (2) Pieux de grande lo (3) Forage à sec , tibi (4) Dans la cas descr li conviert d'effecti (5) Bans bulage ni riri (6) Injection sélactre (7) Injection sélactre	ingueu s non l aiss, la ais un ais fan strépi	# (supěrieu buvoyé . s botlemen s étude spé učés perdivi étove 4 fa/b	re e 30 m) t latérai pevi iofique dans i (perois rugi de débit.	cha: xeuse	140 CAE H),				•		othrabor	des cartés

PILE DESIGN BASED ON PRESSUREMETER (5)

In order to calculate the bearing capacity of a deep foundation, the limit values for the pile base strength Q_{pu} and the lateral friction Q_{su} have to be multiplied by the following reducing factors, depending on the limit state considered:

	Serviceability Limit State (SLS)	Ultimate Limit State (ULS)
Pile base strength Q _{pu}	0.33	0.3
Lateral friction Q _{su}	0.5	0.75

PILE DESIGN BASED ON PRESSUREMETER (6)

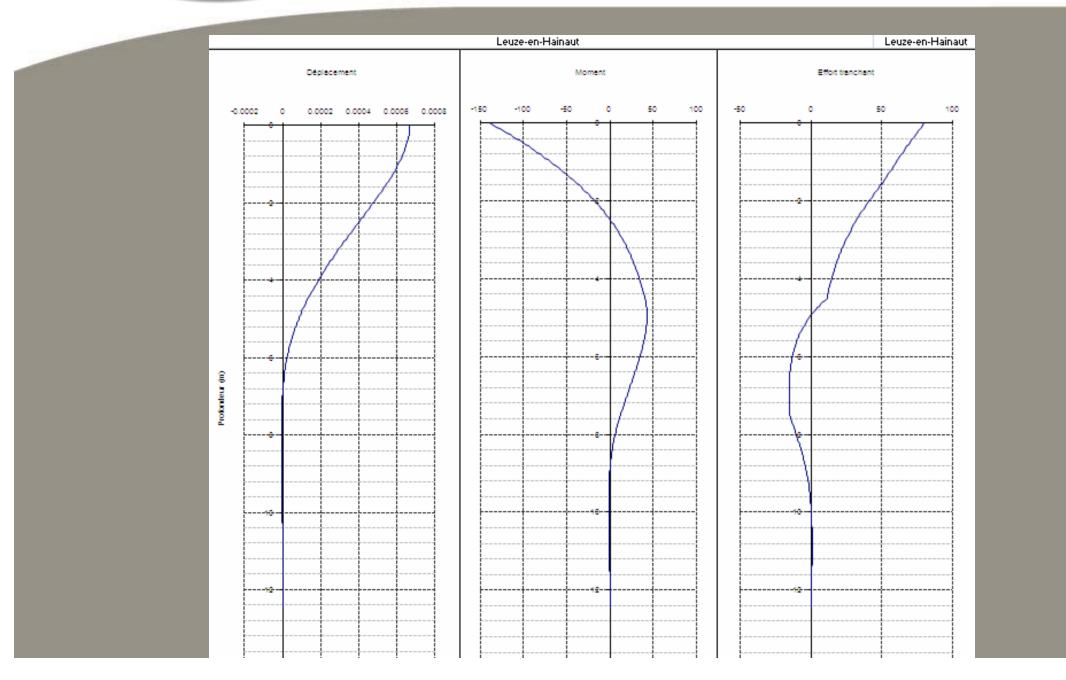
The soil horizontal stiffness K_h is provided by the following formula based on the Menard modulus E_M measured with the pressuremeter.

$$K_{h} = \frac{12.E_{M}}{\frac{4}{3}} \frac{B_{0}}{B} \left(2,65.\frac{B}{B_{0}}\right)^{\alpha} + \alpha \qquad (\text{short term})$$

With

- $B_0 = 0.60 m;$
- B : the pile base diameter [m]
- a: a coefficient depending on soil type.

ТҮРЕ	Tourbe	Argile		Limon		Sable		Grave	
	α	E _M /p	α,	E _M /p ₁	α.	E _M /p1	α	E _M /Pi	α
Surconsolidé ou très serré		>16	1	>14	2/3	>12	1/2	> 10	1/3
Normalement consolidé ou normalement serré	1	9-16	2/3	8-14	1/2	7-12	1/3	6-10	1/4
Sous-consolidé altéré et remanié ou lâche	-	7-9	1/2	5-8	1/2	5-7	1/3		-



PILE DESIGN BASED ON PRESSUREMETER (7)

The soil horizontal stiffness is calculated for different soil layers along the pile length and are introduced in the software Pilplamt in order to obtain the pile head displacement δ .

Based on this pile head displacement and on the horizontal force V applied on pile head, the pile horizontal stiffness is provided by the ratio $K_h = V/\delta$.

PILE DESIGN BASED ON PRESSUREMETER (8)

The pile vertical stiffness K_v is provided by the following formula taking into account the vertical load applied on pile head N_c in SLS and the vertical pile head displacement δ_v .

$$K_{v} = \frac{N_{c}}{\delta_{v}} \quad [MN / m]$$

The following spring stiffness are taken into account to calculate the vertical pile head displacement:

- k_τ is the lateral friction vertical stiffness [MN/m];
- k_q is the pile base vertical stiffness [MN/m];
- k_{pieu} is the pile vertical stiffness [MN/m].

The Fascicule 62 – titre V provides a method to calculate the vertical stiffness of piles based on lateral friction and cone resistance mobilization laws.

Considering bored piles and soil type at pile base, the friction and base vertical stiffness k_{τ} and k_{α} are provided by the following formula:

$$k_{\tau} = \frac{2E_M}{B}$$
 and $k_q = \frac{11E_M}{B}$ [MN/m³]

where

- E_M is the Menard's modulus [MN/m²];
- B is the pile diameter [m].

To obtain the calculated stiffness expressed in MN/m, k_{τ} and k_{q} have to be respectively divided by the pile shaft area and the pile base area A.

The pile vertical stiffness $k_{\mbox{\tiny pieu}}$ is obtained by the formula provided here-under:

where
$$k_{pieu} = \frac{EA}{L}$$

- E is the concrete Young's modulus = 17 000 MN/m² at long term;
- A is the pile base area [m²];
- L is the pile length [m].

PRESSUREMETER TEST – STUDY CASE FEBRUARY 2011 23

THANKS FOR YOUR ATTENTION.