

Feasibility study on bamboo foundation mats for rubble mound breakwaters on soft soil layers

Veerle Bastien

Promotor: Prof. Dr. ir. Adam Bezuijen Supervisor: Dr. Ramiro Verastegui Flores Black line: Global natural bamboo habitat Grey line: World's tropical zone

Dendrocalamus barbatus

• Local species growing near the construction site

Content

Why bamboo

Strength properties of bamboo

Pull-out properties of the bamboo mat

Safety factor of a breakwater

reinforced with a bamboo mat

Design of a bamboo mat Conclusion

Content

Why bamboo

Strength properties of bamboo

Pull-out properties of the bamboo mat

Safety factor of a breakwater

reinforced with a bamboo mat

Design of a bamboo mat Conclusion

Strength properties of the dendrocalamus barbatus

Symbol	Steel	Tensar SS40	Bamboo	Unit
σ _{t,0}	200-400	-	>85.4	N/mm ²
$\sigma_{c,0}$	200-400	-	>25	N/mm ²
σ _{c,90}	200-400	-	>2.05	N/mm ²

Symbol	Tensar SS40	Bamboo	Unit
T _{t,0}	40	>865.83	N/mm ²
Т _{с,0}	40	>123.69	N/mm²

Pull-out proportions of the bamboo mat

- Theoretical approach
- Fill system
- Reinforcement materials
- Backfill material
- Pull-out test results
- Numerical approach (Plaxis)

Theoretical approach

- $F_{tot} = F_f + F_b$
- F_f = Friction resistance

$$F_f = A_s * \sigma_a' * \tan \delta$$

• F_b = Passive bearing resistance

$$F_{b} = N * W * d(y) * \sigma_{bm} * (1-DI)$$

- σ_{bm} = to determine:
 - » Prandl and Buisman
 - » Jewell et al
 - » Peterson and Anderson
 - » Experimental
 - » Numerical

Theoretical approach

- $F_{tot} = F_f + F_{be}$
- F_f = Friction resistance

$$F_f = A_s * \sigma_a' * tan\delta$$

• F_b = Passive bearing resistance

$$F_{b} = N * W * d(y) * \sigma_{bm} * (1-DI)$$

- σ_{bm} = to determine:
 - » Prandl and Buisman
 - » Jewell et al
 - » Peterson and Anderson
 - » Experimental
 - » Numerical

Peterson and Anderson

$$\sigma'_b = N_q \times \sigma'_v = \exp\left[\pi \times \tan \phi'\right] \times \left[\tan^2\left(\frac{\pi}{4} + \frac{\phi'}{2}\right)\right] \times \sigma'_v$$

where:

- N_q Bearing capacity factors
- σ_b' Bearing capacity resistance
- σ'_v Effective vertical stress
- ϕ' effective internal friction angle of the soil

Jewell et al

Prandl and Buisman

$P_r = V_b \times p_b + V_c \times c + V_g \times \gamma_k \times b$

P_r	Critical fraction surface
$B_b imes p_b$	Effect of the side load p_b next to the foundation on the foundation level
$V_c imes c$	Cohesion along the slip plane
$V_g imes \gamma_k imes B$	Weight of the soil mass under the foundation
γ_k	Density of the soil
B_l	Width of the loaded strip

Results

Results

Fill system

Fill system

Reinforcement materials

Not compacted sand

Compacted sand

Transversal bamboo member 6cm diameter with 57kPa

Compacted sand

Geogrid with 51kPa

Wet Sand

Tranversal bamboo member 5cm diameter 56kPa

Clay layer: Koalin

Clay layer: Koalin

Geogrid 55kPa

Compare of the results?

 Because of the different pressure for each test it is recommended to calculate the friction/ bearing resistance angle of the inclusions in stead of the force:

$$\phi_r = \arctan \frac{F}{F_n}$$

Results								
	Passive bearing angle $\phi_b [\circ]$							
Material	exp.	num.	Prandl	Jewell	Pet.			
	NOT COMPACTED SAND							
Bamboo mat	31.5	34.4	29.1	18.2	46.1			
	COMPACTED SAND							
Bamboo mat	42.0	-	33.6	21.9	52.0			
Geogrid	29.1	-	-	-	-			
	COMPACTED WET SAND							
Bamboo mat	27.8	-	38.1	24.8	58.7			
	CLAY LINER							
Bamboo mat	28.5	15.9	25.1	16.2	40.6			
Geogrid	23	-	-	-	-			

Conclusion

- Tensile resistance is better for a bamboo mat than the Tensar SS40 40kN/m²<<800kN/m²
- Pull-out resistance is better for a Bamboo mat than the Tensar SS40
- SF is higher for the Bamboo mat than the Tensar SS40
- But durability analyses are required and a good design has to be made and checked with the real situation
- Bamboo can not resist Shear forces

Questions?